# Algorithms for NLP



## Parsing II

Yulia Tsvetkov – CMU

Slides: Ivan Titov – University of Edinburgh, Chris Dyer – Deepmind



- HW2 out
- Today: Sachin will give an overview of HW2
- Recitation on EM next week 10/12
- Recitation on HW2 the week after 10/19
- Yulia office hours
  - today: 3:30-4:00
  - next week Yulia is away, no office hours



### INPUT:

 The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market





# Context Free Grammar (CFG)

Grammar (CFG)

Lexicon

. . .

| $ROOT \rightarrow S$    | $NP \rightarrow NP PP$     | $NN \rightarrow interest$              |
|-------------------------|----------------------------|----------------------------------------|
| $S \to NP \; VP$        | $VP \rightarrow VBP NP$    | $\text{NNS} \rightarrow \text{raises}$ |
| $NP \rightarrow DT NN$  | $VP \rightarrow VBP NP PP$ | $VBP \to interest$                     |
| $NP \rightarrow NN NNS$ | $PP \rightarrow IN NP$     | $VBZ \rightarrow raises$               |

• Other grammar formalisms: LFG, HPSG, TAG, CCG...





- Internal nodes correspond to phrases
  - S a sentence
  - NP (Noun Phrase): My dog, a sandwich, lakes,...
  - VP (Verb Phrase): ate a sausage, barked, ...
  - PP (Prepositional phrases): with a friend, in a car, ...

Nodes immediately above words are PoS tags (aka preterminals)

- PN pronoun
- D determiner
- V verb
- N noun
- P preposition

# Parsing with CKY

|   | lead | can | po | bison |  |
|---|------|-----|----|-------|--|
| С | ) -  | 1   | 2  | 3     |  |

| $VP \rightarrow M V$<br>$VP \rightarrow V$<br>$NP \rightarrow N$<br>$NP \rightarrow N NP$             | Inner rules      |
|-------------------------------------------------------------------------------------------------------|------------------|
| N  ightarrow can<br>N  ightarrow lead<br>N  ightarrow poison<br>M  ightarrow can<br>M  ightarrow must | reterminal rules |
| $V \rightarrow poison$                                                                                |                  |

 $V \rightarrow lead$ 

| lead<br>0 | ca<br>1 | n po<br>2 | oison<br>3 |         |         |         |                                    | $VP \to M \ V$ $VP \to V$                                              | Inner rules |
|-----------|---------|-----------|------------|---------|---------|---------|------------------------------------|------------------------------------------------------------------------|-------------|
|           |         |           |            |         |         |         |                                    | $NP \rightarrow N$                                                     |             |
|           |         |           |            | max = 1 | max = 2 | max = 3 |                                    | $NP \to N \ NP$                                                        |             |
|           |         |           | min = 0    |         |         | S?      |                                    | N  ightarrow can<br>N  ightarrow lead<br>N  ightarrow poison           | ıl rules    |
|           |         |           | min = 1    |         |         |         |                                    | $\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$ | stermina    |
|           |         |           | min = 2    |         |         |         | Chart (aka<br>parsing<br>triangle) | $V \rightarrow poison$<br>$V \rightarrow lead$                         | Pre         |







| $\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \begin{array}{c} \text{can} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$ |         |         |         | $VP \to M \ V$ $VP \to V$                                               | Inner rules                |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|-------------------------------------------------------------------------|----------------------------|
|                                                                                                                                                      |         |         |         | $NP \to N$                                                              |                            |
|                                                                                                                                                      | max = 1 | max = 2 | max = 3 | $NP \rightarrow N \ NP$                                                 |                            |
| min = 0                                                                                                                                              |         |         | S?      | $\begin{bmatrix} N \to can \\ N \to lead \\ N \to poison \end{bmatrix}$ | rules                      |
| min = 1                                                                                                                                              |         |         |         | $\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$  | <sup>&gt;</sup> reterminal |
| min = 2                                                                                                                                              |         |         |         | $ \begin{bmatrix} V \to poison \\ V \to lead \end{bmatrix} $            |                            |

| $\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix}$ can $\begin{vmatrix} \text{poison} \\ \text{poison} \end{vmatrix}$ |                 |         | $VP \to M \ V$ $VP \to V$                                    | nner rules |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|--------------------------------------------------------------|------------|
| 0 1 2 0                                                                                                                       |                 |         | $NP \rightarrow N$                                           | _          |
|                                                                                                                               | max = 1 max = 2 | max = 3 | $NP \rightarrow N NP$                                        |            |
| min = 0                                                                                                                       |                 | 6<br>S? | N  ightarrow can<br>N  ightarrow lead<br>N  ightarrow poison | rules      |
| min = 1                                                                                                                       | 2               | 3       | $M \to can$<br>$M \to must$                                  | reterminal |
| min = 2                                                                                                                       |                 |         | $V  ightarrow poison \ V  ightarrow lead$                    |            |

| $\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \begin{array}{c} \text{can} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $VP \to M V$<br>$VP \to V$                                                                            | Inner rules    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------|
|                                                                                                                                                      | max = 1 $max = 2$ $max = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $NP \to N$ $NP \to N \ NP$                                                                            |                |
| min = 0<br>min = 1                                                                                                                                   | $\begin{bmatrix} 1 & 4 & 6 \\ & & S? \\ & & 2 & 5 \\ \hline & & 1 & 1 \\ \hline &$ | N  ightarrow can<br>N  ightarrow lead<br>N  ightarrow poison<br>M  ightarrow can<br>M  ightarrow must | terminal rules |
| min = 2                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V  ightarrow poison \ V  ightarrow lead$                                                             | Pre            |

| $\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \begin{array}{c} \text{can} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$ |                 |               |   | $VP \to M \ V$ $VP \to V$                                              | Inner rules |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|---|------------------------------------------------------------------------|-------------|
|                                                                                                                                                      |                 |               |   | $NP \rightarrow N$                                                     |             |
|                                                                                                                                                      | max = 1 max = 2 | 2 max = 3     | _ | $NP \rightarrow N NP$                                                  |             |
| min = 0                                                                                                                                              | 1               |               |   | $N \rightarrow can$                                                    |             |
|                                                                                                                                                      |                 |               |   | $N \to lead$ $N \to poison$                                            | ules        |
| <b>m</b> in = 1                                                                                                                                      | 2 ?             |               |   | $\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$ | terminal ru |
| min = 2                                                                                                                                              |                 | з<br><b>?</b> |   | $V  ightarrow poison \ V  ightarrow lead$                              | Pre         |

VP

| $\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} $ can $\begin{vmatrix} \text{poison} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$ |                 |               | $\begin{array}{c} VP \rightarrow M \\ VP \rightarrow \end{array}$ | V V<br>V V        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|-------------------------------------------------------------------|-------------------|
|                                                                                                                                                               | max = 1 max = 2 | max = 3       | $NP \rightarrow N$ $NP \rightarrow N N$                           | N<br>P            |
| min = 0                                                                                                                                                       | <sup>1</sup> ?  |               | $\begin{bmatrix} N \to co \\ N \to leo \\ N \to poiso$            | n<br>id<br>on Ies |
| <b>m</b> in = 1                                                                                                                                               | 2 ?             |               | $\begin{bmatrix} M \to cc \\ M \to mu \end{bmatrix}$              | st st             |
| min = 2                                                                                                                                                       |                 | 3<br><b>?</b> | ig  V 	o poise V 	o lee                                           | m<br>nd           |

| lead can poison |                                          |                  |   | $VP \to M \ V$ $VP \to V$ | ner rules |
|-----------------|------------------------------------------|------------------|---|---------------------------|-----------|
| 0 1 2 3         |                                          |                  |   |                           | Inr       |
|                 |                                          |                  |   | $NP \rightarrow N$        |           |
|                 | max = 1 max = 2                          | max = 3          |   | $NP \rightarrow N NP$     |           |
|                 |                                          | 1                | - |                           |           |
| min – 0         | $\begin{bmatrix} 1 & N, V \end{bmatrix}$ |                  |   | $N \to can$               |           |
| min = 0         |                                          |                  |   | $N \rightarrow lead$      | S         |
|                 |                                          |                  |   | $N \rightarrow poison$    | 'ule      |
|                 | $ ^2 N.M$                                |                  |   |                           | alr       |
| <b>m</b> in = 1 | ,                                        |                  |   | $M \to can$               | nin       |
|                 |                                          |                  |   | $M \to must$              | teri      |
|                 |                                          | <sup>3</sup> N,V |   |                           | Pre       |
| min = 2         |                                          |                  |   | V  ightarrow poison       |           |
|                 |                                          |                  |   | $V \rightarrow lead$      |           |

| $\begin{vmatrix} \text{lead} \\ \text{can} \end{vmatrix}$ poison $\begin{vmatrix} 0 \\ 1 \\ 2 \\ 3 \end{vmatrix}$ |                         | $VP \rightarrow M V$<br>$VP \rightarrow V$                             | nner rules  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------|
| max = 1                                                                                                           | l max = 2 max = 3       | $NP \to N$ $NP \to N NP$                                               | _           |
| $\min = 0 \begin{bmatrix} 1 & N, V \\ NP, V \end{bmatrix}$                                                        | <i>P</i> <b>?</b>       | $N  ightarrow can \ N  ightarrow lead \ N  ightarrow poison$           | ules        |
| <b>m</b> in = 1                                                                                                   | <sup>2</sup> N, M<br>NP | $\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$ | eterminal r |
| min = 2                                                                                                           | NP,VP                   | $V  ightarrow poison \ V  ightarrow lead$                              | Ţ           |





| $\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \begin{array}{c} \text{can} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$ |                                                                 |                             | $VP \to M \ V$ $VP \to V$                                    | Inner rules |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------|--------------------------------------------------------------|-------------|
|                                                                                                                                                      | max = 1 max = 2                                                 | max = 3                     | $NP \to N$ $NP \to N NP$                                     |             |
| min = 0                                                                                                                                              | $\begin{bmatrix} 1 & N, V & 4 & NP \\ NP, VP & & \end{bmatrix}$ |                             | N  ightarrow can<br>N  ightarrow lead<br>N  ightarrow poison | ules        |
| <b>m</b> in = 1                                                                                                                                      | <sup>2</sup> N, M<br>NP                                         | <sup>5</sup> ?              | $M \to can$<br>$M \to must$                                  | eterminal r |
| min = 2                                                                                                                                              |                                                                 | <sup>3</sup> N, V<br>NP, VP | $V  ightarrow poison \ V  ightarrow lead$                    | Pro         |



| $\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \operatorname{can} \begin{vmatrix} \text{poison} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$ |                                                                 |                 | $VP \rightarrow P$ $VP$                                         | $ \begin{array}{c} V & V \\ \rightarrow V & \\ \end{array} $ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|-----------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                                                           | max = 1 max = 2                                                 | max = 3         | $\begin{array}{c} NP\\ NP \rightarrow N\end{array}$             | $\rightarrow N$ $NP$                                         |
| min = 0                                                                                                                                                                   | $\begin{array}{c c}1 & N, V & 4 & NP \\ NP, VP & & \end{array}$ | 6<br><b>?</b>   | $\begin{bmatrix} & N \\ & N \\ & N \\ & N \\ & N \end{pmatrix}$ | r can<br>lead<br>pison ₽                                     |
| <b>m</b> in = 1                                                                                                                                                           | <sup>2</sup> N, M<br>NP                                         | 5 $S, VP,$ $NP$ | $\begin{array}{c} M - \\ M \rightarrow n \end{array}$           | → can<br>nust eterminal r                                    |
| min = 2                                                                                                                                                                   | 2                                                               | NP,VP           | $ \begin{bmatrix} V \to pe \\ V \to \end{bmatrix} $             | ה<br>vison<br>lead                                           |

| $\begin{vmatrix} \text{lead} \\ \text{lead} \end{vmatrix} \begin{array}{c} \text{can} \\ \text{poison} \end{vmatrix}$ $0 \qquad 1 \qquad 2 \qquad 3$ |                                                                                                                                                                                                             |              | $VP \to M \ V$ $VP \to V$                                    | Inner rules |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------|-------------|
|                                                                                                                                                      | max = 1 max = 2 r                                                                                                                                                                                           | max = 3      | $NP \to N$ $NP \to N NP$                                     |             |
| min = 0                                                                                                                                              | $\begin{bmatrix} 1 & N, V & 4 & NP \\ \hline NP, VP & & & \\ \end{bmatrix} \begin{bmatrix} 6 & & & \\ \hline NP, VP & & & \\ \end{bmatrix} \begin{bmatrix} 6 & & & \\ \hline NP, VP & & & \\ \end{bmatrix}$ | ?            | N  ightarrow can<br>N  ightarrow lead<br>N  ightarrow poison | ules        |
| <b>m</b> in = 1                                                                                                                                      | $\begin{bmatrix} 2 & N, M \\ NP \end{bmatrix} \begin{bmatrix} 5 \\ S \end{bmatrix}$                                                                                                                         | S, VP, VP    | $M \to can$<br>$M \to must$                                  | eterminal r |
| min = 2                                                                                                                                              | 3<br><i>N</i>                                                                                                                                                                                               | N V<br>VP VP | $V  ightarrow poison \ V  ightarrow lead$                    | Pre         |



| lead ca | an poison |                                                           |                             | $\begin{array}{ccc} VP \rightarrow M & V \\ VP \rightarrow V \end{array}$ | ner rules  |
|---------|-----------|-----------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------|------------|
| UI      | 2 3       | max = 1 max = 2                                           | max = 3                     | $NP \to N$ $NP \to N NP$                                                  | <u></u>    |
| mid=1   | min = 0   | $\begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix}^{4} NP$ | $^{6}S, NP$                 | N  ightarrow can<br>N  ightarrow lead<br>N  ightarrow poison              | ules       |
|         | min = 1   | <sup>2</sup> N, M<br>NP                                   | ${}^{5}S, VP, NP$           | $\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$    | terminal r |
|         | min = 2   |                                                           | <sup>3</sup> N, V<br>NP, VP | $V  ightarrow poison \ V  ightarrow lead$                                 | Pre        |

| lead   ca<br>0 1 | n poison<br>2 3 |                                                                      |                                      | $\begin{array}{ccc} VP \rightarrow M & V \\ VP \rightarrow V \end{array}$ | Inner rules |
|------------------|-----------------|----------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-------------|
|                  |                 | max = 1 max = 2                                                      | max = 3                              | $NP \to N$ $NP \to N NP$                                                  |             |
| mid=2            | min = 0         | $\begin{bmatrix} 1 & N, V & 4 & NP \\ NP, VP & & & \\ \end{bmatrix}$ | ${}^{6}S, NP$<br>S(?!)               | N  ightarrow can<br>N  ightarrow lead<br>N  ightarrow poison              | rules       |
|                  | min = 1         | <sup>2</sup> N, M<br>NP                                              | ${}^{5}S, VP,$<br>NP<br>${}^{3}N, V$ | $\begin{array}{c} M \rightarrow can \\ M \rightarrow must \end{array}$    | reterminal  |
|                  | min = 2         |                                                                      | NP,VP                                | $V  ightarrow poison \ V  ightarrow lead$                                 | Ω.          |



#### $N \rightarrow girl$ 0.2 $S \rightarrow NP VP$ 1.0 $N \rightarrow telescope$ 0.7 $VP \rightarrow V$ 02 $N \rightarrow sandwich 0.1$ $VP \rightarrow V NP 04$ $PN \rightarrow I$ 1.0 $VP \rightarrow VP PP 0.4$ $V \rightarrow saw$ 0.5 $V \rightarrow ate^{0.5}$ $NP \rightarrow NP PP 0.3$ $NP \rightarrow D N 0.5$ $P \rightarrow with 0.6$ $NP \rightarrow PN$ 0.2 $P \rightarrow in$ 0.4 $D \rightarrow a 0.3$ $PP \rightarrow P NP$ 1.0 $D \rightarrow the 0.7$

## PCFGs



 $p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times 0.5 \times 0.3 \times 0.2 \times 1.0 \times 0.6 \times 0.5 \times 0.3 \times 0.7$  $= 2.26 \times 10^{-5}$ 



- Chart is represented by a 3d array of floats chart[min][max][label]
  - It stores probabilities for the most probable subtree with a given signature
- chart[0][n][S] will store the probability of the most probable full parse tree

# Intuition

## $C \to C_1 \ C_2$



| covers all words | covers all words              |  |
|------------------|-------------------------------|--|
| btw min and mid  | btw <i>mid</i> and <i>max</i> |  |

For every C choose  $C_1, C_2$  and mid such that  $P(T_1) \times P(T_2) \times P(C \to C_1C_2)$ 

is maximal, where  $T_1$  and  $T_2$  are left and right subtrees.



for each  $w_i$  from left to right

for each preterminal rule C -> wi
chart[i - 1][i][C] = p(C -> wi)



for each max from 2 to n

```
max = 1
                                                                                max = 2
                                                                                          max = 3
for each min from max - 2 down to 0
                                                                                        6
  for each syntactic category C
                                                              min = 0
    double best = undefined
                                                                               2
                                                                                        5
    for each binary rule C \rightarrow C<sub>1</sub> C<sub>2</sub>
                                                              min = 1
       for each mid from min + 1 to max - 1
                                                                                        3
         double t_1 = chart[min][mid][C_1]
                                                               min = 2
                                                                                                    min
         double t_2 = chart[mid][max][C_2]
         double candidate = t_1 * t_2 * p(C \rightarrow C_1 C_2)
         if candidate > best then
                                                                                             max
            best = candidate
    chart[min][max][C] = best
```



- For each signature we store backpointers to the elements from which it was built
  - start recovering from [0, n, S]

What backpointers do we store?



- For each signature we store backpointers to the elements from which it was built
  - start recovering from [0, n, S]
- What backpointers do we store?
  - rule
  - for binary rules, midpoint



• The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):  $C \rightarrow x$ 

 $C \to C_1 C_2$ 

- Any CFG can be converted to an equivalent CNF
  - Equivalent means that they define the same language
  - However (syntactic) trees will look differently
  - It is possible to address it by defining such transformations that allows for easy reverse transformation





• How do we get a set of binary rules which are equivalent?





• How do we get a set of binary rules which are equivalent?

 $NP \to DT X$  $X \to NNP Y$  $Y \to VBG NN$




- How do we get a set of binary rules which are equivalent?
  - $NP \rightarrow DT \ X$
  - $X \to NNP \ Y$
  - $Y \rightarrow VBG NN$
- A more systematic way to refer to new non-terminals NP → DT @NP|DT
   @NP|DT → NNP @NP|DT\_NNP
   @NP|DT\_NNP → VBG NN





How do we get a set of binary rules which are equivalent?

 $NP \rightarrow DT X \quad 1.0$  $X \rightarrow NNP Y \quad 1.0$  $Y \rightarrow VBG NN \quad 0.2$ 







• CNF includes only two types of rules:

 $C \to x$  $C \to C_1 C_2$ 

• What about unary rules:

 $C \to C_1$ 



## **Unary Rules**





• How to integrate unary rules  $C \rightarrow C_1$ ?



of each min from max -1 down to 0 -

// First, try all binary rules as before.

. . .

// Then, try all unary rules.

for each syntactic category C

```
for each unary rule C \rightarrow C _1
```





- What if the grammar contained 2 rules:
  - $\begin{array}{c} A \to B \\ B \to C \end{array}$
- But C can be derived from A by a chain of rules:

 $A \to B \to C$ 

 One could support chains in the algorithm but it is easier to extend the grammar, to get the transitive closure

$$\begin{array}{ccc} A \to B \\ B \to C \end{array} \qquad \Rightarrow \qquad \begin{array}{ccc} A \to B \\ B \to C \\ A \to C \end{array}$$



## Why unary closure



- for each syntactic category C
  - for each unary rule C  $\rightarrow$  C<sub>1</sub>
    - if chart[min][max][C1] then
      - chart[min][max][C] = true













- What if the grammar contained 2 rules:
  - $\begin{array}{c} A \to B \\ B \to C \end{array}$
- But C can be derived from A by a chain of rules:

 $A \to B \to C$ 

 One could support chains in the algorithm but it is easier to extend the grammar, to get the transitive closure

$$\begin{array}{ccc} A \rightarrow B & & A \rightarrow A \\ B \rightarrow C & & B \rightarrow C & & B \rightarrow B \\ A \rightarrow C & & A \rightarrow C & & C \rightarrow C \end{array} \begin{array}{c} \text{Convenient for} \\ \text{programming} \\ \text{reasons in the Point for} \\ \text{case} \end{array}$$

CFG







## Unary (reflexive trans The fact that the rule is composite needs to be

stored to recover the true tree



to I for each parent



## Unary (reflexive trans The fact that the rule is composite needs to be

stored to recover the true tree

Note that this is not a PCFG anymore as the rules do not sum to 1 for each parent

 $A \to B$ 0.1  $A \to B$ 0.1 $A \to A$ 1 0.2  $\Rightarrow$  $B \rightarrow C$  0.1  $B \to B$  $B \to C$ 1  $A \rightarrow C$  1.e - 5 $A \to C$  $C \to C$ 0.02

What about loops, like:  $A \to B \to A \to C$  ?



- For each signature we store backpointers to the elements from which it was built
  - start recovering from [0, n, S]
- What do we store in backpointers?
  - rule
  - for binary rules, midpoint
- Be careful with unary rules
  - Basically you can assume that you always used an unary rule from the closure (but it could be the trivial one  $C \rightarrow C$ )



- Basic pruning (roughly):
  - For every span (i,j) store only labels which have the probability at most N times smaller than the probability of the most probable label for this span
  - Check not all rules but only rules yielding subtree labels having non-zero probability
- Coarse-to-fine pruning
  - Parse with a smaller (simpler) grammar, and precompute (posterior) probabilities for each spans, and use only the ones with non-negligible probability from the previous grammar



- Intrinsic evaluation:
  - Automatic: evaluate against annotation provided by human experts (gold standard) according to some predefined measure
  - Manual: ... according to human judgment

- Extrinsic evaluation: score syntactic representation by comparing how well a system using this representation performs on some task
  - E.g., use syntactic representation as input for a semantic analyzer and compare results of the analyzer using syntax predicted by different parsers.



- Automatic intrinsic evaluation is used: parsers are evaluated against gold standard by provided by linguists
  - There is a standard split into the parts:
    - training set: used for estimation of model parameters
    - development set: used for tuning the model (initial experiments)
    - test set: final experiments to compare against previous work



- Exact match: percentage of trees predicted correctly
- Bracket score: scores how well individual phrases (and their boundaries) are identified

The most standard measure; we will focus on it



Subtree signatures for CKY

- The most standard score is bracket score
- It regards a tree as a collection of brackets: [min, max, C]
- The set of brackets predicted by a parser is compared against the set of brackets in the tree annotated by a linguist
- Precision, recall and F1 are used as scores



### Preview: F1 bracket score





## **Estimating PCFGs**

## Estimating PCFGs

A CA

| Associate probabilities with the rules : $p(X  ightarrow lpha)$ |             |                                 |                           |     |
|-----------------------------------------------------------------|-------------|---------------------------------|---------------------------|-----|
| $\forall X \to \alpha \in R :  0 \le p(X \to \alpha) \le 1$     |             |                                 |                           |     |
| $\forall$                                                       | $X \in N$ : | $\sum p(X \to \alpha) = 1$      |                           |     |
|                                                                 |             | $\alpha: X \to \alpha \in R$    |                           |     |
| $S \rightarrow NP \ VP$                                         | 1.0         | (NP A girl) (VP ate a sandwich) | N 	o girl                 | 0.2 |
|                                                                 |             | ( 5, ( ) )                      | $N \rightarrow telescope$ | 0.7 |
| $VP \rightarrow V$                                              | 0.2         |                                 | $N \rightarrow sandwich$  | 0.1 |
| $VP \rightarrow V NP$                                           | 0.4         | (VP ate) (NP a sandwich)        | $PN \rightarrow I$        | 1.0 |
| $VP \rightarrow VP PP$                                          | 0.4         | (VP saw a girl) (PP with)       | $V \rightarrow saw$       | 0.5 |
| ND ND DE                                                        | 0.3         | (NP a girl) (PP with )          | $V \rightarrow ate$       | 0.5 |
| $NF \to NF  FF$ $NP \to D  N$                                   | 0.5         | (D a) (N sandwich)              | $P \rightarrow with$      | 0.6 |
| $NP \rightarrow PN$                                             | 0.2         |                                 | $P \rightarrow in$        | 0.4 |
|                                                                 |             |                                 | $D \rightarrow a$         | 0.3 |
| $PP \rightarrow P \ NP$                                         | 1.0         | (P with) (NP with a sandwich)   | $D \rightarrow the$       | 0.7 |
|                                                                 |             |                                 | -                         |     |



1

Probabilistic Regular Grammar

$$N^i \rightarrow w^j N^k$$
  
 $N^i \rightarrow w^j$   
Start state, N



#### Probabilistic Regular Grammar

 $N^i \to w^j N^k$ 

 $N^i \to w^j$ 

Start state,  $N^1$ 





#### Probabilistic Regular Grammar

$$\begin{split} N^i &\to w^j N^k \\ N^i &\to w^j \end{split}$$

Start state,  $N^1$ 







[Credit: Chris Manning]







- Notation
- Calculating inside probabilities
- Calculating outside probabilities
- The inside-outside algorithm (EM) preview



# Notation

- Non-terminal symbols (latent variables):  $\{N^1, \ldots, N^n\}$
- Sentence (observed data):  $\{w_1, \ldots, w_m\} = w_{1m}$
- $N_{pq}^{j}$  denotes that  $N^{j}$  spans  $w_{pq}$  in the sentence





Definition (compare with backward prob for HMMs):

 $\beta_j(p,q) = P(w_p, \dots, w_q | N_{pq}^j, G) = P(N_{pq}^j \to w_{pq} | G)$ 

- Computed recursively
  - Base case:  $\beta_j(k,k) = P(w_k|N_{kk}^j,G) = P(N_j \to w_k|G)$
  - Induction:

$$\beta_j(p,q) = \sum_{rs} \sum_{d=p}^{q-1} P(N^j \to N^r N^s) \beta_r(p,d) \beta_s(d+1,q)$$

The grammar is binarized

let's draw...



## Implementation: PCFG parsing

for each max from 2 to n

```
for each min from max - 2 down to 0
  for each syntactic category C
    double best = undefined
    for each binary rule C \rightarrow C<sub>1</sub> C<sub>2</sub>
       for each mid from min + 1 to max - 1
         double t_1 = chart[min][mid][C_1]
         double t_2 = chart[mid][max][C_2]
         double candidate = t_1 * t_2 * p(C \rightarrow C_1 C_2)
         if candidate > best then
           best = candidate
    chart[min][max][C] = best
```



```
for each max from 2 to n
```

```
for each min from max - 2 down to 0
  for each syntactic category C
    double total = 0.0
    for each binary rule C \rightarrow C<sub>1</sub> C<sub>2</sub>
       for each mid from min + 1 to max - 1
         double t_1 = chart[min][mid][C_1]
         double t_2 = chart[mid][max][C_2]
         double candidate = t_1 * t_2 * p(C \rightarrow C_1 C_2)
         total = total + candidate
    chart[min][max][C] = total
```



### Implementation: inside

for each max from 2 to n

```
for each min from max - 2 down to 0
                                                                         q-1
  for each syntactic category C
                                                         \beta_j(p,q) = \sum \sum P(N^j \to N^r N^s) \beta_r(p,d) \beta_s(d+1,q)
    double total = 0.0
                                                                     rs d=p
    for each binary rule C \rightarrow C<sub>1</sub> C<sub>2</sub>
       for each mid from min + 1 to max
         double t_1 = chart[min][mid][C_1]
         double t_2 = chart[mid][max][C_2]
         double candidate = t_1 \neq t_2 \neq p(C \rightarrow C_1 C_2)
          total = total + candidate
    chart[min][max][C] = total
```



### Implementation: inside

for each max from 2 to n

```
for each min from max - 2 down to 0
                                                                                 q-1
  for each syntactic category C
                                                                \beta_j(p,q) = \sum \sum P(N^j \to N^r N^s) \beta_r(p,d) \beta_s(d+1,q)
     double total = 0.0
                                                                              rs d=p
     for each binary rule C \rightarrow C<sub>1</sub> C<sub>2</sub>
        for each mid from min + 1 to max - 1
           double t<sub>1</sub> = chart[min][mid][C<sub>1</sub>]
           double t<sub>2</sub> = chart[mid][max][C<sub>2</sub>]
           double candidate = t_1 * t_2 * p(C \rightarrow C_1 C_2)
```

total = total + candidate

chart[min][max][C] = total



## Inside probability: example


















 $\beta_S(1,m) = P(S \to w_1, \dots, w_m | G)$ 



Definition (compare with forward prob for HMMs):

$$\alpha_j(p,q) = P(w_{1(p-1)}, N_{pq}^j, w_{(q+1)m}|G)$$

• The joint probability of starting with S, generating words  $w_1, \ldots, w_{p-1}$ , the non terminal  $N^{\mathcal{I}}$  and words  $w_{q+1}, \ldots, w_m$ .





# Calculating outside probability

Computed recursively, base case

 $\alpha_1(1,m) = \alpha_S(1,m) = 1$   $\alpha_{j\neq 1}(1,m) = 0$ 

- Induction?
- Intuition: N<sup>j</sup><sub>pq</sub> must be either the L or R child of a parent node. We first consider the case when it is the L child.





# Calculating outside probability

- ► The yellow area is the probability we would like to calculate
  - ► How do we decompose it?





Step 1: We assume that N<sup>f</sup><sub>pe</sub> is the parent of N<sup>j</sup><sub>pq</sub> Its outside probability, α<sub>f</sub>(p, e) (represented by the yellow shading) is available recursively. But how do we compute the green part?





Step 1: The red shaded area is the inside probability for  $N^g_{(q+1)\epsilon}$  , i.e.  $\beta_g(q+1,e)$ 





Step 3: The blue shaded area is just the production  $N^f \to N^j N^g$ , the corresponding probability  $P(N^f \to N^j N^g | N^f, G)$ 





If we multiply the terms together, we have the joint probability corresponding to the yellow, red and blue areas, assuming N<sup>j</sup> was the L child of N<sup>f</sup>, and give fixed non-terminals f and g, as well as a fixed partition e





The joint probability corresponding to the yellow, red and blue areas, assuming N<sup>j</sup> was the L child of some non-terminal:





The joint probability corresponding to the yellow, red and blue areas, assuming N<sup>j</sup> was the R child of some non-terminal:





The joint final joint probability (the sum over the L and R cases):





The joint final joint probability (the sum over the L and R cases):





► For PCFGs we need to compute:

$$\theta^t = P(N^j \to N^r N^s | N^j)$$



 Given two events, x and y, the maximum likelihood estimation (MLE) for their conditional probability is:

$$P(x \mid y) = \frac{count(x, y)}{count(x)}$$

 If they are observable, it's easy to see what to do: just count the events in a representative corpus and use the MLE



- What these are hidden variables that cannot be observed directly?
- Use a model µ and iteratively improve the model based on a corpus of observable data (O) generated by the hidden variables:

$$P_{\hat{\mu}}(x \mid y) = \frac{E_{\mu}[count(x, y) \mid O]}{E_{\mu}[count(x) \mid O]}$$

 It is worth noting that if you know how to calculate the numerator, the denominator is trivially derivable.



- By updating µ and iterating, the model converges to at least a local maximum
- This can be proven, but I will not do it here.



 Goal: estimate a model μ that is a PCFG (in Chomsky normal form) that characterizes a corpus of text.

- Required input:
  - Size of non-terminal vocabulary, *n*
  - At least one sentence to be modeled, O



 Stated with the general schema described earlier, we seek to the MLE probabilities for productions in the grammar

$$P(N^{j} \rightarrow N^{r}N^{s} | N^{j}) = \frac{count(N^{j} \rightarrow N^{r}N^{s}, N^{j})}{count(N^{j})}$$

 (Observe that this would be trivially easy to calculate this with a treebank, since the non-terminals are observable in a treebank)



 Since the non-terminals are not visible, we can use EM to estimate the probabilities iteratively:

$$P_{\hat{\mu}}(N^{j} \rightarrow N^{r}N^{s} | N^{j}) = \frac{E_{\mu}[count(N^{j} \rightarrow N^{r}N^{s}, N^{j}) | O]}{E_{\mu}[count(N^{j}) | O]}$$



#### To be continued...

Next: recitation on EM