Algorithms for NLP

Parsing |l

Yulia Tsvetkov — CMU

Slides: Ivan Titov — University of Edinburgh,
Chris Dyer — Deepmind

¥

Announcements

= HW2 out

= Today: Sachin will give an overview of HW2
» Recitation on EM next week 10/12

» Recitation on HW?2 the week after 10/19

= Yulia office hours
= today: 3:30-4:00
= next week Yulia is away, no office hours

¥

Syntactic Parsing

= INPUT:
= The move followed a round of similar increases by other
lenders, reflecting a continuing decline in that market

= OUTPUT: o

S
J—’_'_'j_
NP VP
ﬁ o — —ha__ —
DT NN VBD NP , S
| | | e T T — | |
The move followed NP PP , VP
DIT NIN l:d NP VI?C NP
,;—'—'-’_'-——-——I__ _,_;——'_ﬂ_——-——_‘_
a round of NP PP reflecting NP PP
|| NNS IN NP DT VBCGC NN IN NP
I I I T I I I |
similar increases by | NNS a continuing decline in DT NN

I I I I
other lenders that market

Context Free Grammar (CFG)

¥

Grammar (CFG) Lexicon
ROOT — S NP — NP PP NN — interest
S —>NPVP VP — VBP NP NNS — raises
NP — DT NN VP — VBP NP PP VBP — interest
NP — NN NNS PP — IN NP VBZ — raises

= Other grammar formalisms: LFG, HPSG, TAG, CCG...

Constituent trees

P = |nternal nodes correspond to phrases
NP VP = S—asentence
pN/\N V/\NP = NP (Noun Phrase): My dog, asandwich, lakes,..
| | N = VP (Verb Phrase): ate asausage, barked, ...
My dog ate D N = PP (Pre it I bh . with a friend. i
| | positional phrases): with a friend, in a
a sausage car, ...

= Nodes immediately above words are PoS tags (aka preterminals)

= PN -—pronoun
= D-—determiner
= V—verb

= N —noun

= P —preposition

Parsing with CKY

lead

can

poison

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead can [poison
0 1 2 3
max = 1 max = 2 max = 3
min =0 S?
min = 1
min = 2

Chart (aka
parsing
triangle)

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead

can

poison

lead

can

poison

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead

can

poison

lead

can

poison

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead

can

poison

lead

can

poison

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

lead can [poison
0 1 2 3
max = 1 max = 2 max = 3
min =90 S?
min = 1
min = 2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

lead can [poison
0 1 2 3
max = 1 max = 2 max = 3
1 4
min =90 S?
2
min = 1
min = 2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

lead can [poison
0 1 2 3
max = 1 max = 2 max = 3
1 4
min =90 S?
A A A
2
min = 1
min =2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

lead can [poison
0 1 2 3
max = 1 max = 2 max =3
.1
min=20 ?
2

. 2

min =1 .
3
?

min = 2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead can [poison

min=20

min = 1

min = 2

S— NP VP

Inner rules

N — lead
N — poison

M — must

! 1
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
| M — can I
- i
! |
! |
! |
! |
1 .

V' — poison :
! |
! |
I

V — lead

Preterminal rules

lead can [poison

min=20

min = 1

min = 2

max = 1

max = 2

max =3

S— NP VP

Inner rules

N,M

S N,V

N — lead
N — poison

M — must

! 1
! |
! |
! |
! |
! |
! |
! |
! |
! |
! |
| M — can I
- i
! |
! |
! |
! |
1 .

V' — poison :
! |
! |
I

V — lead

Preterminal rules

lead can [poison

min=20

min = 1

min = 2

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

max = 1 max = 2 max = 3
1N,V 4
NP, VP ?
2
N, M
NP
S N,V
NP, VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

lead can |poison

= o e o o e e e e

max = 1 max = 2 max = 3 NP -+ N NP

Inner rules

1 N,V 4 N — can

min =0)
NP, VP ? N — lead

N — poison

2
N, M
min = 1 NP M — can

M — must

3 N,V

min = 2 NP VP V' — poison
V — lead

Preterminal rules

S— NP VP

lead can |poison

= o e o o e e e e

max = 1 max = 2 max = 3 NP -+ N NP

Inner rules

1N,V 4NP N — can

min =0)
NP, VP N — lead

N — poison

2
N, M
min = 1 NP M — can

M — must

3 N,V

min = 2 NP VP V' — poison
V — lead

Preterminal rules

lead can [poison

min=20

min = 1

min = 2

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

max = 1 max = 2 max = 3
"'Nv | NP
NP, VP
2
NM [5
NP y
38 N,V
NP, VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

n
_______________ @
lead | can |poison VP->MV _: >
VP>V E
0 1 2 3 =
NP — N
max = 1 max = 2 max = 3 :_ZY_P_?_]_V_]_V_P_____:
- 1N,V 4NP N — can
min = ;
NP.VP N — {ead 2
N — poison E
2 5 —_—
NM 'S, vP &
min =1 NP NP M — can E
M — must Q
3 g
N,V i
i 5 NP, VP V' — poison
V — lead

lead can [poison

min=20

min = 1

min = 2

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

max = 1 max = 2 max = 3
1 4 6
N,V NP o
NP, VP '
2 5
N,M |'S, VP,
NP NP
& NEY
NP, VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead can [poison

min=20

min = 1

min = 2

S— NP VP

VP —- MYV

VP =V

NP — N
NP — N NP

Inner rules

max = 1 max = 2 max = 3
"nvyv *ap
’ ?
NP, VFP
2 5
N,M |8 |[P.
NP IVP
3 NV
NRAWP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

7
@
lead can | poison VP—-MYV >
VP =V E
0 1 2 3 k=
NP — N
max = 1 max = 2 max = 3 :_ZYF_?_{V_N_P____J
. "nvv |*np |°s, NP N — can
N = .
. NP, VP N — lead 2
mid=1 N — poison =
2 5 =
N,M |8, VP, g
min = 1 NP NP M — can E
M — must Q
3 g
N,V i
min = 2 NP, VP V' — poison
V — lead

NP — N
NP — N NP

Inner rules

lead can [poison
0 1 2 3
max = 1 max = 2 max = 3
'~ v *np |°s NP
min =0
. NPVEP S
mid=2 ' (*)
2 5
N, M 5, Vi
min = 1 | NP NP
S N,V
min = 2 NP VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

7
)
lead can | poison VP—-MYV >
VP =V E
0 1 2 3 <
NP — N
max = 1 max = 2 max = 3 NP — N NP
4 6
. "'nv | Np |°s, NP N — can
n = .
NPYP S(?M) N — lead 0
N — poison =
2 5 =
N, M |5, VP ©
min = 1 NP NP M — can E
M — must Q
3 g
N,V s
i NE VD V' — poison
V — lead

Apparently the sentence is ambiguous for the grammar: (as the grammar
overgenerates)

PCFGS S — NP VF10

VP — V02
VP —V NF 04
VP — VP PF 04

S
A
e NP — D N 05
PV, NP NP — PN 02
T i A
o DA PP10 PP — P NF10
D N P/\NP
|0.3 | 0.2 | 0.6 /\0.5
a girl with D N
| 0.3 | 0.7
a telescope

p(T) =1.0 x 0.2 x 1.0 x 0.4 x 0.5 x 0.3%
0.5 0.3 x0.2x1.0x0.6x0.5x0.3x0.7
— 226 x 107°

N — girlo2

N — telescope0.7
N — sandwich 0.1
PN — 110

V — saw0.5

V — ate05

P — with06

P — 104

D — a0.3
/) — +he0.7

27

¥

CKY with PCFGs

= Chartis represented by a 3d array of floats

chart[min] [max] [label]

= |t stores probabilities for the most probable subtree with a given
signature

= chart[0] [n] [S] will store the probability of the most
probable full parse tree

Intuition

C—C; Oy

For every Cchoose C,, C, and mid such that

P(T)) x P(Ty) x P(C — C,C)

is maximal, where T and T, are leftand right
subtrees.

Implementation: preterminal rules

¥

for each wi from left to right

for each preterminal rule C -> w;

Implementation: binary rules

for each max from 2 to n

for each min from max - 2 down to 0 gk = 1 mgde=2 e 2

for each syntactic category C] 4 6

:— ———————————————————————— -: min =90 S?
I double best = undefined : A A A
1

for each binary rule C -> C; C; il = 4

for each mid from min + 1 to max - 1

double t; = chart[min][mid][C:] ifi=s2 min

double t; = chart[mid][max][C:]

double candidate = t; * t; * p(C -> C; C2)

chart[min][max][C] best

Recovery of the tree

¥

= For each sighature we store backpointers to the elements

from which it was built
= start recovering from [O, n, S]

= What backpointers do we store?

¥

Recovery of the tree

= For each sighature we store backpointers to the elements

from which it was built
= start recovering from [O, n, S]

= What backpointers do we store?
= rule
= for binary rules, midpoint

¥

Constraints on the grammar

= The basic CKY algorithm supports only rules in the Chomsky

Normal Form (CNF): O

C — 0102

= Any CFG can be converted to an equivalent CNF
= Equivalent means that they define the same language
= However (syntactic) trees will look differently
= |t is possible to address it by defining such transformations that
allows for easy reverse transformation

E& Transformation to CNF form: binarization

= Consider ~NP— DT NNP VBG NN
NP

DT NNP VBG NN

| | | |
the Dutch publishing group

= How do we get a set of binary rules which are equivalent?

E& Transformation to CNF form: binarization

= Consider ~NP— DT NNP VBG NN
NP

DT NNP VBG NN

| | | |
the Dutch publishing group

= How do we get a set of binary rules which are equivalent?

NP — DT X
X > NNPY
Y - VBG NN

E& Transformation to CNF form: binarization

= Consider ~NP— DT NNP VBG NN
NP

DT NNP VBG NN

| | | |
the Dutch publishing group

= How do we get a set of binary rules which are equivalent?
NP — DT X
X —->NNPY
Y = VBG NN

= A more systematic way to refer to new non-terminals
NP — DT QNP|DT

QNP|DT —- NNP QNP|DT NNP
QNP|DT'NNP — VBG NN

E& Transformation to CNF form: binarization

= Consider NP DT NNP VBG NN 0.2

NP g 2
DT NNP VBG NN
| | | |
the Dutch publishing group

= How do we get a set of binary rules whichare equivalent?

NP—-DT X 1.0 A

X 3>NNPY 1.0 DT e
Y S VBG NN 0.2 | A
the
NNP v
\ ez
Dutch vBG NN

| |
publishing group

E& Transformation to CNF form: binarization

= |nstead of binarizing tuples we can binarize trees on
preprocessing: NP

/\ Also known as lossless
DT NNP VBG NN Markovization in the
| | | | context of PCFGs
the Dutch publishing group
NP
Can be easily reversed
DT @QNP-> DT on postprocessing
|
the
NNP @QNP-> _DT_NNP
‘ /\
Dutch — vBg NN

| |
publishing group

¥

Unary Rules

= CNF includes only two types of rules:

C'—x
0%0102

= What about unary rules:

(' —

Unary Rules

CFG CNF
A - X A - run, B — run, C - run, X — run,
B - X A - play, B - play, C - play, X - play,
C - X A - sleep, B - sleep, C - sleep, X - sleep,
A - love B - love C - love X — love
X - C.C,
[::$> A - CC, B - CC, cC - CC, X - CC,
% . run = explode the grammar
X - play = make it hard to reverse
X — sleep
X —» love

Unary rules

= How to integrate unary rules C—C, ?

max = 1 max = 2 max =3

for each max from 1 to n <« !/\\
1 4 8

new bounds!
) / min=0 S?
for each min from max - 1 down to 0 .

I\
n
[¢)]

// First, try all binary rules as before. o N

min =2

// Then, try all unary rules.

for each syntactic category C
for each unary rule C - C;

chart[min] [max] [C] = maximum (chart[min] [max] [C],
chart[min][max][Cl])

¥

Unary closure

= What if the grammar contained 2 rules:
A— B

B —C

= But C can be derived from A by a chain of rules:

A—-B—=C
= One could support chains in the algorithm but it is easier to
extend the grammar, to get the transitive closure
A— B

— B —C
A—C

A— B
B —C

Why unary closure

// Then, try all unary rules.

for each syntactic category C

for each unary rule C -> C;
if chart[min][max][C1] then

chart[min][max][C] = true

Why unary closure

scenario 1

S?

S?

Why unary closure

S? C,B G C,B g9
A
scenario 1 B - C : ’ A
S C 57 Cr B 57
scenario 2 A - B : ’ B

¥

Unary closure

= What if the grammar contained 2 rules:

A— B
B —C

= But C can be derived from A by a chain of rules:

A—->B—>0C

= One could support chains in the algorithm but it is easier to
extend the grammar, to get the transitive closure

A— B
B —C

A— B
— B —C
A—C

A— A
B — B
C—=C

Convenient for
programming
reasons in the PCFG
case

¥

Unary (reflexive transitive) closure

A B 01 A— B 0.1 A— A
— .

— B —C 0.2 B —> B
B — C 0.2

A—C 0.2 x 0.1 C— O

Note that this is not a PCFG anymore as the rules do not sum
to | for each parent

a2 -\ 1" _ .

¥

Unary (reflexive trans’

The fact that the rule is composite needs to be
stored to recover the true tree

4 B 0.1 A— B 0~ A— A 1
— .

— B —C 0.2 B — B 1
B — C 0.2

A—C 0.2 x 0.1 C— O 1

Note that this is not a PCFG anymore as the rules do not sum
to | for each parent

a2 -\ 1" _ .

¥

Unary (reflexive trans’

The fact that the rule is composite needs to be
stored to recover the true tree

4 B 0.1 A— B 0~ A— A 1
— .

— B —C 0.2 B — B 1
B — C 0.2

A—C 0.2 x 0.1 C— O 1

Note that this is not a PCFG anymore as the rules do not sum
to | for each parent

A— B 0.1 A— B 0.1 A— A 1
B — C 0.2 = B - C 0.1 B — B 1
A—C l.e — 1§ A—C 0.02 C— O 1

What about loops, like: A - B s A4 — C ?

¥

Recovery of the tree

= For each sighature we store backpointers to the elements

from which it was built
= start recovering from [O, n, S]

= What do we store in backpointers?
= rule
= for binary rules, midpoint

= Be careful with unary rules
= Basically you can assume that you always used an unary rule from
the closure (but it could be the trivialone C— C)

¥

Speeding up the algorithm

= Basic pruning (roughly):
= For every span (i,j) store only labels which have the probability at
most N times smaller than the probability of the most probable
label for this span
= Check not all rules but only rules yielding subtree labels having
non-zero probability
= Coarse-to-fine pruning
= Parse with a smaller (simpler) grammar, and precompute (posterior)
probabilities for each spans, and use only the ones with
non-negligible probability from the previous grammar

Parsing evaluation

¥

= |ntrinsic evaluation:
= Automatic: evaluate against annotation provided by human experts
(gold standard) according to some predefined measure
= Manual: ... according to human judgment

= Extrinsic evaluation: score syntactic representation by
comparing how well a system using this representation

performs on some task

= E.g., use syntactic representation as input for a semantic analyzer
and compare results of the analyzer using syntax predicted by
different parsers.

¥

Standard evaluation setting in parsing

= Automatic intrinsic evaluation is used: parsers are evaluated

against gold standard by provided by linguists

= There is a standard split into the parts:
= training set: used for estimation of model parameters
= development set: used for tuning the model (initial experiments)
= test set: final experiments to compare against previous work

E&Automatic evaluation of constituent parsers

= Exact match: percentage of trees predicted correctly
= Bracket score: scores how well individual phrases (and their
boundaries) are identified

The most standard measure;
we will focus on it

¥

= The most standard score is bracket score

= |t regards a tree as a collection of bracketsimin, max,C'

= The set of brackets predicted by a parser is compared against
the set of brackets in the tree annotated by a linguist

= Precision, recall and F1 are used as scores

B racC kets SCOres Subtree signatures for

CKY

Preview: F1 bracket score

¥

100

95

90

85

80

75

70

65 -
Treebank Unlexicalized Lexicalized Automatically The best
PCFG PCFG (Klein PCFG (Collins, Induced PCFG results reported
and Manning, 1999) (Petrovetal, (asof2012)
2003) 2006)

Estimating PCFGs

¥

Estimating PCFGs

Associate probabilities with the rules : p(X — «)

VX—>aeR: 0<pX—a)<l1
VX e N : Y pX —=a)=1

a:X—aceR

S— NP VF 1.0 (NP A girl) (VP ate a sandwich)
VP —V 0.2
VP —V NF 0.4 (VP ate) (NP a sandwich)
VP — VP PF 0.4 (VP saw a girl) (PP with ...)
NP — NP PF 0.3 (NP a girl) (PP with ...))
NP —-D N 0.5 (D a) (N sandwich)
NP — PN 0.2
PP —- P NP 1.0 (P with) (NP with a sandwich)

N — girl

N — telescope
N — sandwich
PN — 1

V — saw

V — ate

P — with

P —in

D — a

I) — the

0.2
0.7
0.1
1.0
0.5
0.5

0.6
0.4

0.3
0.7

¥

Estimating PCFGs: Intuition

= Probabilistic Regular Grammar

N' — wINK
N — wJ

Start state, N1

¥

= Probabilistic Regular Grammar

Estimating PCFGs: Intuition

N' — wiNkK
Nt - wi

Start state, N1

..H.> HMM)

[Credit: Chris Manning]

¥

= Probabilistic Regular Grammar

Estimating PCFGs: Intuition

N' — wiNkK
Nt - wi

Start state, N1

0-9-9 -9~

the big brown box

[Credit: Chris Manning]

Estimating PCFGs: Intuition

X: NP — N — N’ — N — sink

[Credit: Chris Manning]

Estimating PCFGs: Intuition

¥

X: NP — N — N’ — N — sink
| | | |
O: the big brown box

h/\ Qo
N

big N’
/\
brown /6
\

box
[Credit: Chris Manning]

¥

Unsupervised estimation of PCFGs

= Notation

= Calculating inside probabilities

= Calculating outside probabilities

= The inside-outside algorithm (EM) - preview

p 3 Notation
= Non-terminal symbols (latent variables): {N! ... N™}
= Sentence (observed data): {wy,...,wn,} = win

= NJ denotes that N7 spans w,, inthe sentence

A% NP

le DET N
VI)B _ ate

the orange

Inside probability

¥

Definition (compare with backward prob for HMM:s):
Bi(p:q) = P(wp, . .. >wq|Ngq7 G) = P(Ngq — Wpq|G)

Computed recursively

» Base case: B;(k, k) = P(wg|N],,G) = P(N; = wy|G e s
» Induction: is binarized
qg—1
Bi(p,q) =D > P(N? = N'N*)B,(p, d)Bs(d+1,¢
rs d=p

let’'s draw...

Implementation: PCFG parsing

' for each max from 2 to n
for each min from max - 2 down to 0
for each syntactic category C
I double best = undefined
" for each binary rule C -> Ci C;
for each mid from min + 1 to max - 1
double t; = chart[min][mid][C:1]

double t; = chart[mid][max][C:]

double candidate = t; * t; * p(C -> C; C2)

o
()
0n
r’-
Il
Q
[v))
=]
Q.
-
Q.
V)]
ct
®

chart[min][max][C] best

Implementation: inside

' for each max from 2 to n
for each min from max - 2 down to 0

for each syntactic category C

I double total = 0.0

for each binary rule C -> C; C;
for each mid from min + 1 to max - 1
double t; = chart[min][mid][C:1]
double t; = chart[mid][max][C:]

double candidate = t; * t; * p(C -> C; C2)

|
| total = total + candidate
:
1

chart[min][max][C] = total

Implementation: inside

' for each max from 2 to n
for each min from max - 2 down to 0

for each syntactic category C q—1

. _ J T N\TS \
double total = 0.0 Bj(p’q) _ZZP(N — N'N)&(p,d)ﬁs(d-I—l,q)

rs d=p

for each binary rule C -> C; C;
for each mid from min + 1 to max
double t; = chart[min][mi
double t; = chart[mid}/m [C2]

double candidate ~ t t2 * p(C -=> C; C3)

total = to#al cdndidate

chart[min][max][C] = total

Implementation: inside

' for each max from 2 to n

for each min from max - 2 down to 0

for each syntactic category C q—1

. _ J T N\TS \
double total = 0.0 Bj(p’q) _ZZP(N — N'N)&(p,d)ﬁs(d-I—l,q)

rs d=p

for each binary rule C -> C; C;

for each mid from min + 1 to max - 1
double t; = chart[min][mid][C:1]
double t; = chart[mid][max][C:]

double candidate = t; * t; * p(C -> C; C2)

total = total + candidate

chart[min][max][C] = total

Inside probability: example

¥

NP—-DETN 0.8 NP—N 0.2

DET—a 0.6 DET—the 0.4
N—apple 0.8 N—orange 0.2
Bper(L1)
By (2,2)
Bp(1,2)

Brp(1,2)

¥

Inside probability: example

NP—-DETN 0.8 NP—N 0.2
DET—a 0.6 DET—the 0.4
N—apple 0.8 N—orange 0.2

ﬁDET(lal) ~ P(thelDET;pG) s P(DET — the | G) =04

By (2,2)
Brp(1,2)

Brp(1,2)

¥

Inside probability: example

NP—-DETN 0.8 NP—N 0.2
DET—a 0.6 DET—the 0.4
N—apple 0.8 N—orange 0.2

ﬁDET(lal) ~ P(the I DE]]] 9G) s P(DET — the | G) =04
By(2,2) = P(N — orange| G) = 0.2
Bp(1,2)

/3.-\’P (192)

Inside probability: example

¥

NP—-DETN 0.8 NP—N 0.2
DET—a 0.6 DET—the 0.4
N—apple 0.8 N—orange 0.2

ﬁDET(lal) ~ P(the I DET;,,G) s P(DET — the | G) =04
By(2,2) = P(N — orange| G) = 0.2

Byp(1,2) = P(NP — DET - N) B e (L) 5 (2,2)
=0.8 x 0.4 x0.2
Bp(1,2) = 0.064

¥

Inside probability: example

NP—-DETN 0.8 NP—N 0.2
DET—a 0.6 DET—the 0.4
N—apple 0.8 N—orange 0.2

Poer(L1) = P(the| DET,,,G) = P(DET — the| G) =0.4
B (2,2) = P(N — orange| G) = 0.2

Pyp(1,2) = P(NP — DET - N)B - (1,1) B (2,2)
=(.8 x 0.4 x (.2
B (1,2) =0.064

Bs(l,m) = P(S = wi,...,wn|G)

}ﬁ Outside probability

Definition (compare with forward prob for HMMs):

& (Pa Q) — P(wl(p—l)a N;Zq,w@ﬂ)mlGl

The joint probability of starting with S, generating words wi, ..., w,_1, the non terminal /\V J
and Wordswq+17 vy W,

¥

Calculating outside probability

Computed recursively, base case
al(lam) :&S(lam) =1 Oé?'?él(Lm) =

Induction?

Intuition: N7 must be either the L or R child of a parent node. We first consider the case
when it is the L child.

¥

Calculating outside probability

The yellow area is the probability we would like to calculate
» How do we decompose it?

¥

Calculating outside probability

Step 1: We assume thatN/ is the parent of N/, Its outside probability,c ¢ (p, ¢)
(represented by the yellow shading) is available recursively. But how do we compute the
green part?

¥

Calculating outside probability

Step 1: The red shaded area is the inside probability for N7 (1) i.e.
Bq (q +]-7 6)

¥

Calculating outside probability

Step 3: The blue shaded area is just the production p7f _y A7 S, the corresponding
probability P(Nf N NjNg|Nf, e

¥

If we multiply the terms together, we have the joint probability corresponding to the
yellow, red and blue areas, assuming)/ was the L child of)/, and give fixed
non-terminals f and g, as well as a fixed partition e

Calculating outside probability

at(p,e) - Bylq+1,€) - P(N/ — N/N)

What if we do not
want to assume this? |

¥

The joint probability corresponding to the yellow, red and blue areas, assuming V7 was
the L child of some non-terminal:

Calculating outside probability

>‘ >‘

(p, e)-B,(qg+1,e)-P(N/ — N/NY)

¥

The joint probability corresponding to the yellow, red and blue areas, assuming /7 was
the R child of some non-terminal:

Calculating outside probability

p—1
S e+ v

f.g e=1

¥

The joint final joint probability (the sum over the L and R cases):

Calculating outside probability

: P :
aj(pa) = > ap(pe)-Bgla+1,e)- P(NT = N'NY)+3" 3" as(e.q)By(e,p—1) - P(NT — NIN7)
f,ge=q+1 fige=1

¥

The joint final joint probability (the sum over the L and R cases):

Calculating outside probability

Wie - WW, - - WW, . . .WW,. . W,

m _ p—1 _
ajpa)= >, > af(pe) Bgla+l,e) P(NY - N NI)Y+3" S as(e,q) Bgle,p— 1) P(NI — NIN7)
f,9#3 e=q+1 f,ge=1

¥

Inside-outside algorithm

For PCFGs we need to compute:

9* = P(N? — N"N*®|N?)

EM

¥

= Given two events, x and y, the maximum likelihood estimation
(MLE) for their conditional probability is:

count(x, y)

Plxly) = count(x)

= |f they are observable, it’s easy to see what to do: just count
the events in a representative corpus and use the MLE

¥

EM

= What these are hidden variables that cannot be observed
directly?

= Use a model p and iteratively improve the model based on a

corpus of observable data (O) generated by the hidden

variables:
E [count(x,y)| O]

E [count(x)| O]

P[,(xly)=

= |t is worth noting that if you know how to calculate the
numerator, the denominator is trivially derivable.

¥

EM

= By updating u and iterating, the model converges to at least a
local maximum
= This can be proven, but | will not do it here.

¥

The inside-outside algorithm

= Goal: estimate a model p that is a PCFG (in Chomsky normal
form) that characterizes a corpus of text.

= Required input:
= Size of non-terminal vocabulary, n
= At least one sentence to be modeled, O

The inside-outside algorithm

¥

= Stated with the general schema described earlier, we seek to
the MLE probabilities for productions in the grammar

count(N’ —= N"N*,N”)
count(N')

P(N' — N'N*|N’) =

= (Observe that this would be trivially easy to calculate this with
a treebank, since the non-terminals are observable in a
treebank)

The inside-outside algorithm

¥

= Since the non-terminals are not visible, we can use EM to
estimate the probabilities iteratively:

E, [count(N’ — N"N*,N’)| O]
E [count(N')| O]

P,(N/ = N'N*| N') =

¥

To be continued...

= Next: recitation on EM

