Algorithms for NLP

Parsing II

Yulia Tsvetkov - CMU

Slides: Ivan Titov - University of Edinburgh,
Chris Dyer - Deepmind

Announcements

- HW2 out
- Today: Sachin will give an overview of HW2
- Recitation on EM next week 10/12
- Recitation on HW2 the week after 10/19
- Yulia office hours
- today: 3:30-4:00
- next week Yulia is away, no office hours

Syntactic Parsing

- INPUT:
- The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market
- OUTPUT:

Context Free Grammar (CFG)

Grammar (CFG)
Lexicon

$\mathrm{ROOT} \rightarrow \mathrm{S}$	NP \rightarrow NP PP	NN \rightarrow interest
$\mathrm{S} \rightarrow$ NP VP	VP \rightarrow VBP NP	NNS \rightarrow raises
NP \rightarrow DT NN	VP \rightarrow VBP NP PP	VBP \rightarrow interest
NP \rightarrow NN NNS	$\mathrm{PP} \rightarrow \mathbb{I N ~ N P ~}$	VBZ \rightarrow raises

- Other grammar formalisms: LFG, HPSG, TAG, CCG...

Constituent trees

- Internal nodes correspond to phrases
- S-a sentence
- NP (Noun Phrase): My dog, a sandwich, lakes,..
- VP (Verb Phrase): ate a sausage, barked, ...
- PP (Prepositional phrases): with a friend, in a car, ...
- Nodes immediately above words are PoS tags (aka preterminals)
- PN - pronoun
- D - determiner
- V-verb
- N-noun
- P-preposition

Parsing with CKY

	lead	can
0	1	poison \mid
	2	3

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
N P \rightarrow N
$$

$$
N P \rightarrow N N P
$$

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison }
\end{array}
$$

$$
M \rightarrow c a n
$$

$$
M \rightarrow \text { must }
$$

$$
\begin{gathered}
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{gathered}
$$

$$
S \rightarrow N P \quad V P
$$

$$
S \rightarrow N P \quad V P
$$

$$
S \rightarrow N P \quad V P
$$

$$
S \rightarrow N P V P
$$

$$
\begin{array}{r}
V P \rightarrow M \quad V \\
V P \rightarrow V \\
N P \rightarrow N \\
N P \rightarrow N N P \\
\hline N \rightarrow \text { can } \\
N \rightarrow l e a d \\
N \rightarrow \text { poison } \\
M \rightarrow \text { can } \\
M \rightarrow \text { must } \\
V \rightarrow \text { poison } \\
V \rightarrow l e a d
\end{array}
$$

$$
S \rightarrow N P \quad V P
$$

\mid lead	can	\mid poison \mid
0	1	2

$\max =1 \quad \max =2 \quad \max =3$

$$
\min =2
$$

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

sə|n» »əuu|

$$
\begin{array}{r}
N P \rightarrow N \\
N P \rightarrow N N P
\end{array}
$$

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison }
\end{array}
$$

$$
\begin{array}{r}
M \rightarrow \text { can } \\
M \rightarrow \text { must }
\end{array}
$$

$$
V \rightarrow \text { poison }
$$

$$
V \rightarrow \text { lead }
$$

$$
S \rightarrow N P V P
$$

\mid lead	can	\mid poison \mid	
0	1	2	3

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
N P \rightarrow N N P
$$

$$
M \rightarrow c a n
$$

$$
\min =2
$$

$$
\begin{gathered}
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{gathered}
$$

$$
N P \rightarrow N
$$

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison }
\end{array}
$$

$$
M \rightarrow \text { must }
$$

$$
S \rightarrow N P V P
$$

\mid lead	can	\mid poison \mid
0	1	2

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
N P \rightarrow N
$$

$$
N P \rightarrow N N P
$$

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison }
\end{array}
$$

$$
M \rightarrow c a n
$$

$$
M \rightarrow \text { must }
$$

$$
\begin{array}{r}
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{array}
$$

$$
S \rightarrow N P \quad V P
$$

\mid lead	can	\mid poison \mid	
0	1	2	3

$\max =1 \quad \max =2 \quad \max =3$

$$
\min =2
$$

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
\begin{array}{r}
N P \rightarrow N \\
N P \rightarrow N N P
\end{array}
$$

sə|n» »əuu|

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison }
\end{array}
$$

$$
\begin{gathered}
M \rightarrow c a n \\
M \rightarrow \text { must }
\end{gathered}
$$

$$
V \rightarrow \text { poison }
$$

$$
V \rightarrow \text { lead }
$$

$$
S \rightarrow N P V P
$$

\mid lead	can	\mid poison \mid	
0	1	2	3

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
0
$$

	$\max =1$	$\max =2$	$\max =3$
$\min =0$	$\begin{array}{ll} 1 & \\ & ? \end{array}$		
$\min =1$		2 ?	
$\min =2$			3

$$
S \rightarrow N P V P
$$

\mid lead	can	\mid poison \mid	
0	1	2	3

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
3
$$

	$\max =1$	$\max =2$	$\max =3$
$\min =0$	${ }^{1} N, V$		
$\min =1$		${ }^{2} N, M$	
$\min =2$			${ }^{3} \mathrm{~N}, V$

「---------	
$N \rightarrow$ can	I
$N \rightarrow$ lead	1
$N \rightarrow l e a d$	∞
${ }_{1} N \rightarrow$ poison	$1 \frac{1}{7}$
'	2
,	©
1 $M \rightarrow$ can	1
$M \rightarrow$ must	1 $\frac{1}{0}$
	1 ¢
!	-
${ }^{1} V \rightarrow$ poison	,
) $V \rightarrow$ lead	I
) $V \rightarrow$ leaa	,

$$
S \rightarrow N P \quad V P
$$

\mid lead	can	\mid poison \mid	
0	1	2	3

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$\max =1 \quad \max =2 \quad \max =3$

min $=0$	$\begin{gathered} 1 \\ N, V \\ N P, V P \end{gathered}$	$?$	
$\min =1$		${ }^{2} \mathrm{~N}, \mathrm{M}$ $N P$	
min $=2$			$\begin{aligned} & 3 N, V \\ & N P, V P \end{aligned}$

$$
\begin{array}{r}
N P \rightarrow N \\
N P \rightarrow N N P
\end{array}
$$

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison }
\end{array}
$$

$$
M \rightarrow c a n
$$

$$
M \rightarrow \text { must }
$$

$$
\begin{array}{r}
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{array}
$$

$$
S \rightarrow N P \quad V P
$$

\mid lead	can	\mid poison \mid
0	1	2

$$
\max =1 \quad \max =2 \quad \max =3
$$

$\min =0$	$\begin{gathered} N, V \\ N P, V P \end{gathered}$	4 ?	
$\min =1$		$\begin{gathered} { }^{2} N, M \\ N P \end{gathered}$	
$\min =2$			$\begin{aligned} & { }^{3} N, V \\ & N P, V P \end{aligned}$

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
\begin{gathered}
N P \rightarrow N \\
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison } \\
M \rightarrow \text { can } \\
M \rightarrow \text { must } \\
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{gathered}
$$

səןnı ıəuu|

$$
S \rightarrow N P \quad V P
$$

\mid lead	can	\mid poison \mid
0	1	2

$$
\max =1 \quad \max =2 \quad \max =3
$$

$\min =0$	$\begin{gathered} 1 \\ N, V \\ N P, V P \end{gathered}$	${ }^{4} N P$	
$\min =1$		$\begin{gathered} { }^{2} N, M \\ N P \end{gathered}$	
$\min =2$			$\begin{aligned} & 3, V \\ & N P, V P \end{aligned}$

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
\begin{gathered}
N P \rightarrow N \\
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison } \\
M \rightarrow \text { can } \\
M \rightarrow \text { must } \\
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{gathered}
$$

səןnı ıəuu|

$$
S \rightarrow N P \quad V P
$$

\mid lead	can	\mid poison \mid
0	1	2

$\max =1 \quad \max =2 \quad \max =3$

min $=0$	$\begin{gathered} 1 \\ N, V \\ N P, V P \end{gathered}$	${ }^{4} N P$	
$\min =1$		2 N, M $N P$	${ }^{5}$?
min $=2$			$\begin{aligned} & 3 N, V \\ & N P, V P \end{aligned}$

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
\begin{array}{r}
N P \rightarrow N \\
N P \rightarrow N N P
\end{array}
$$

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison }
\end{array}
$$

$$
M \rightarrow c a n
$$

$$
M \rightarrow \text { must }
$$

$$
\begin{gathered}
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{gathered}
$$

	lead	can
0	1	2

$$
\begin{gathered}
\bar{V} \vec{P} \rightarrow \bar{M} \bar{V} \\
\bar{V} \rightarrow \bar{V}
\end{gathered}
$$

$\min =0 \quad$| 1
 N, V
 $N P, V P$ | ${ }^{4} N P$ | |
| :--- | :--- | :--- |
| $\min =1$ | | 2
 N, M
 $N P$ |
| $\min =2$ | | |

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison } \\
M \rightarrow \text { can } \\
M \rightarrow \text { must } \\
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{array}
$$

$$
S \rightarrow N P \quad V P
$$

\mid lead	can	\mid poison \mid	
0	1	2	3

$\max =1 \quad \max =2 \quad \max =3$

$\min =0$	$\begin{gathered} 1 \\ N, V \\ N P, V P \end{gathered}$	${ }^{4} N P$	$\begin{array}{ll}6 & \\ & ?\end{array}$
$\min =1$		$\begin{gathered} 2^{2} N, M \\ N P \end{gathered}$	$\begin{array}{r} 5, V P \\ N P \end{array}$
$\min =2$			$\begin{aligned} & 3 \quad N, V \\ & N P, V P \end{aligned}$

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
\begin{array}{r}
N P \rightarrow N \\
N P \rightarrow N N P
\end{array}
$$

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison }
\end{array}
$$

$$
M \rightarrow c a n
$$

$$
M \rightarrow \text { must }
$$

$$
\begin{array}{r}
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{array}
$$

$$
S \rightarrow N P V P
$$

\mid lead	can	\mid poison \mid	
0	1	2	3

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
N P \rightarrow N
$$

$\max =1 \quad \max =2 \quad \max =3$

$$
N P \rightarrow N N P
$$

$N \rightarrow$ can	
$N \rightarrow$ lead	
$N \rightarrow$ poison	$\frac{0}{5}$
$M \rightarrow$ can	$\stackrel{\text { ® }}{\text { ¢ }}$
M \rightarrow must	$\stackrel{\square}{ \pm}$

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison }
\end{array}
$$

$$
M \rightarrow c a n
$$

$$
M \rightarrow \text { must }
$$

$$
\begin{gathered}
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{gathered}
$$

| lead \mid can \mid poison \mid
$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$
$\max =1 \quad \max =2 \quad \max =3$

mid=1	$\mathrm{min}=0$	$\begin{gathered} 1 \\ N, V \\ N P, V P \end{gathered}$	${ }^{4} \mathrm{NP}$	${ }^{6} S, N P$
mid=1				
			${ }^{2} N, M$	${ }^{5} S, V P$;
	$\min =1$			NP
				${ }^{3} \mathrm{~N}, V$
	$\min =2$			$N P, V P$

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$$
\begin{aligned}
& N P \rightarrow N \\
& \hdashline N P \rightarrow N N P \\
& \hdashline N O
\end{aligned}
$$

$$
N \rightarrow c a n
$$

$$
N \rightarrow \text { lead }
$$

$$
N \rightarrow \text { poison }
$$

$$
M \rightarrow c a n
$$

$$
M \rightarrow \text { must }
$$

$$
V \rightarrow \text { poison }
$$

$$
V \rightarrow \text { lead }
$$

\mid lead	can
0	1

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$\max =1 \quad \max =2 \quad \max =3$
mid=2

$\min =0$	$\begin{aligned} & 1 \\ & N, V \\ & N P, V P \end{aligned}$	${ }^{4} N P$	$\begin{gathered} { }^{6} S, N P \\ S(?!) \end{gathered}$
$\min =1$		$\begin{gathered} 2 \\ N, M \\ N P \end{gathered}$	$\begin{array}{r} 5, V P \\ N P \end{array}$
$\min =2$			$\begin{aligned} & 3 \quad N, V \\ & N P, V P \end{aligned}$

$$
\begin{array}{r}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison } \\
M \rightarrow \text { can } \\
M \rightarrow \text { must } \\
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{array}
$$

IS

\mid lead	can	poison \mid
0	1	2

$$
\begin{array}{r}
V P \rightarrow M V \\
V P \rightarrow V
\end{array}
$$

$\max =1 \quad \max =2 \quad \max =3$

$\min =0$	$\begin{gathered} 1 \\ N, V \\ N P, V P \end{gathered}$	${ }^{4} N P$	$\begin{gathered} { }^{6} S, N P \\ S(?!) \end{gathered}$
min $=1$		$\begin{gathered} 2 \\ \hline N, M \\ N P \end{gathered}$	$\begin{array}{r} 5 \\ \hline 5, V P, \\ N P \end{array}$
$\min =2$			$\begin{aligned} & 3 \begin{array}{c} N, V \\ N P, V P \end{array} \end{aligned}$

$$
\begin{gathered}
N \rightarrow \text { can } \\
N \rightarrow \text { lead } \\
N \rightarrow \text { poison } \\
M \rightarrow \text { can } \\
M \rightarrow \text { must } \\
V \rightarrow \text { poison } \\
V \rightarrow \text { lead }
\end{gathered}
$$

$$
\begin{array}{r}
N P \rightarrow N \\
N P \rightarrow N N P
\end{array}
$$

Apparently the sentence is ambiguous for the grammar: (as the grammar overgenerates)

PCFGs

$$
S \rightarrow N P \quad V F 1.0
$$

$N \rightarrow \operatorname{girl} 0.2$ $N \rightarrow$ telescope 0.7 $N \rightarrow$ sandwich 0.1

$$
P N \rightarrow I 1.0
$$

$$
V \rightarrow \text { saw } 0.5
$$

$$
V \rightarrow a t e e^{0.5}
$$

$$
P \rightarrow \text { with } 0.6
$$

$$
P \rightarrow i n 0.4
$$

$$
D \rightarrow a 0.3
$$

$$
D \rightarrow \text { the } 0.7
$$

$$
\begin{aligned}
p(T)= & 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times \\
& 0.5 \times 0.3 \times 0.2 \times 1.0 \times 0.6 \times 0.5 \times 0.3 \times 0.7 \\
& =2.26 \times 10^{-5}
\end{aligned}
$$

CKY with PCFGs

- Chart is represented by a 3d array of floats chart[min][max][label]
- It stores probabilities for the most probable subtree with a given signature
- chart [0] [n] [S] will store the probability of the most probable full parse tree

Intuition

${ }^{C} \rightarrow C_{1} \quad C_{2}$

For every C choose C_{1}, C_{2} and mid such that

$$
P\left(T_{1}\right) \times P\left(T_{2}\right) \times P\left(C \rightarrow C_{1} C_{2}\right)
$$

is maximal, where T_{1} and T_{2} are left and right subtrees.

Implementation: preterminal rules

for each w_{i} from left to right
for each preterminal rule C $->w_{i}$
chart[i-1][i][C] $\left.={ }_{\mathrm{p}}^{\mathrm{p}} \mathrm{C} \rightarrow \mathrm{C} \rightarrow \mathrm{w}_{\mathrm{i}}\right)$

Implementation: binary rules

for each max from 2 to n
for each min from max - 2 down to 0
for each syntactic category C double best = undefined
for each binary rule $\mathrm{C}->\mathrm{C}_{1} \mathrm{C}_{2}$
for each mid from $\min +1$ to max - 1
double $\mathrm{t}_{1}=$ chart[min][mid][C $\left.\mathrm{C}_{1}\right]$
double $t_{2}=$ chart[mid][max][C2]
double candidate $=\mathrm{t}_{1} * \mathrm{t}_{2} * \mathrm{p}\left(\mathrm{C} \rightarrow \mathrm{C}_{1} \mathrm{C}_{2}\right)$

- if candidate > best then
best = candidate
chart[min][max][C] = best

Recovery of the tree

- For each signature we store backpointers to the elements from which it was built
- start recovering from $[0, \mathrm{n}, \mathrm{S}]$
- What backpointers do we store?

Recovery of the tree

- For each signature we store backpointers to the elements from which it was built
- start recovering from $[0, \mathrm{n}, \mathrm{S}]$
- What backpointers do we store?
- rule
- for binary rules, midpoint

Constraints on the grammar

- The basic CKY algorithm supports only rules in the Chomsky Normal Form (CNF):

$$
\begin{array}{r}
C \rightarrow x \\
C \rightarrow C_{1} C_{2}
\end{array}
$$

- Any CFG can be converted to an equivalent CNF
- Equivalent means that they define the same language
- However (syntactic) trees will look differently
- It is possible to address it by defining such transformations that allows for easy reverse transformation

Transformation to CNF form: binarization

- Consider $N P \rightarrow D T$ NNP VBG $N N$

- How do we get a set of binary rules which are equivalent?

Transformation to CNF form: binarization

- Consider $N P \rightarrow D T$ NNP VBG NN

- How do we get a set of binary rules which are equivalent?

$$
\begin{aligned}
& N P \rightarrow D T \quad X \\
& X \rightarrow N N P \quad Y \\
& Y \rightarrow V B G \quad N N
\end{aligned}
$$

Transformation to CNF form: binarization

- Consider $N P \rightarrow D T$ NNP VBG NN

- How do we get a set of binary rules which are equivalent?

$$
\begin{aligned}
& N P \rightarrow D T \quad X \\
& X \rightarrow N N P \quad Y \\
& Y \rightarrow V B G \quad N N
\end{aligned}
$$

- A more systematic way to refer to new non-terminals $N P \rightarrow D T @ N P \mid D T$ $@ N P \mid D T \rightarrow N N P$ @NP|DT_NNP $@ N P \mid D T_{-} N N P \rightarrow V B G N N$

Transformation to CNF form: binarization

- Consider $N P \rightarrow D T$ NNP VBG NN 0.2

- How do we get a set of binary rules whickre equivalent?

$$
\begin{array}{lll}
N P \rightarrow D T & X & 1.0 \\
X \rightarrow N N P & Y & 1.0 \\
Y \rightarrow V B G & N N & 0.2
\end{array}
$$

Transformation to CNF form: binarization

- Instead of binarizing tuples we can binarize trees on preprocessing:

Also known as lossless Markovization in the context of PCFGs

Can be easily reversed on postprocessing

Unary Rules

- CNF includes only two types of rules:

$$
\begin{array}{r}
C \rightarrow x \\
C \rightarrow C_{1} C_{2}
\end{array}
$$

- What about unary rules:

$$
C \rightarrow C_{1}
$$

Unary Rules

CFG

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{X} \\
& \mathrm{~B} \rightarrow \mathrm{X} \\
& \mathrm{C} \rightarrow \mathrm{X} \\
& \ldots \\
& \mathrm{X}
\end{aligned} \boldsymbol{\rightarrow} \mathrm{C}_{1} \mathrm{C}_{2} .
$$

$\mathrm{A} \rightarrow$ run,	$\mathrm{B} \rightarrow$ run,	$\mathrm{C} \rightarrow$ run,	$\mathrm{X} \rightarrow$ run,
$\mathrm{A} \rightarrow$ play,	$\mathrm{B} \rightarrow$ play,	$\mathrm{C} \rightarrow$ play,	$\mathrm{X} \rightarrow$ play,
$\mathrm{A} \rightarrow$ sleep,	$\mathrm{B} \rightarrow$ sleep,	$\mathrm{C} \rightarrow$ sleep, $\mathrm{X} \rightarrow$ sleep,	
$\mathrm{A} \rightarrow$ love	$\mathrm{B} \rightarrow$ love	$\mathrm{C} \rightarrow$ love	$\mathrm{X} \rightarrow$ love
\ldots	\ldots	\ldots	
$\mathrm{A} \rightarrow \mathrm{C}_{1} C_{2}$	$\mathrm{~B} \rightarrow \mathrm{C}_{1} C_{2}$	$\mathrm{C} \rightarrow \mathrm{C}_{1} C_{2}$	$\mathrm{X} \rightarrow \mathrm{C}_{1} C_{2}$

- explode the grammar
- make it hard to reverse

Unary rules

- How to integrate unary rules $C \rightarrow C_{1}$?

Unary closure

- What if the grammar contained 2 rules:

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C
\end{aligned}
$$

- But C can be derived from A by a chain of rules:

$$
A \rightarrow B \rightarrow C
$$

- One could support chains in the algorithm but it is easier to extend the grammar, to get the transitive closure

$$
\begin{array}{ll}
A \rightarrow B \\
B \rightarrow C
\end{array} \quad \Rightarrow \quad \begin{aligned}
& A \rightarrow B \\
& \\
& B \rightarrow C \\
& \\
& A \rightarrow C
\end{aligned}
$$

Why unary closure

$A \rightarrow B$
$B \rightarrow C$
// Then, try all unary rules.
for each syntactic category C
for each unary rule $C \rightarrow C_{1}$
if chart[min][max][C1] then
chart[min][max][C] = true

Why unary closure

$\mathrm{A} \rightarrow \mathrm{B}$
$\mathrm{B} \rightarrow \mathrm{C}$
$\mathrm{A} \rightarrow \mathrm{C}$
scenario 1

Why unary closure

$A \rightarrow B$
$B \rightarrow C \longrightarrow A \rightarrow C$

Unary closure

- What if the grammar contained 2 rules:

$$
\begin{aligned}
& A \rightarrow B \\
& B \rightarrow C
\end{aligned}
$$

- But C can be derived from A by a chain of rules:

$$
A \rightarrow B \rightarrow C
$$

- One could support chains in the algorithm but it is easier to extend the grammar, to get the transitive closure

$$
\begin{array}{llll}
A \rightarrow B & & A \rightarrow B & A \rightarrow A \\
B \rightarrow C & B \rightarrow C & B \rightarrow B & \text { Convenient for } \\
& A \rightarrow C & C \rightarrow C & \text { programming } \\
\text { reasons in the PCFG } \\
\text { case }
\end{array}
$$

Unary (reflexive transitive) closure

			$A \rightarrow B$	0.1	$A \rightarrow A$	1
$A \rightarrow B$	0.1	\Rightarrow	$B \rightarrow C$	0.2	$B \rightarrow B$	1
$B \rightarrow C$	0.2		$A \rightarrow C$	0.2×0.1	$C \rightarrow C$	1

Note that this is not a PCFG anymore as the rules do not sum to I for each parent

Unary (reflexive trans

The fact that the rule is composite needs to be stored to recover the true tree

$A \rightarrow B$	0.1					
$B \rightarrow C$	0.2	\Rightarrow	$A \rightarrow B$	0	$A \rightarrow A$	1
\ldots		$B \rightarrow C$	0.2	$B \rightarrow B$	1	
		$A \rightarrow C$	0.2×0.1	$C \rightarrow C$	1	

Note that this is not a PCFG anymore as the rules do not sum to I for each parent

Unary (reflexive trans

The fact that the rule is composite needs to be stored to recover the true tree

$A \rightarrow B$	0.1				
$B \rightarrow C$	0.2		$A \rightarrow B$	0	$A \rightarrow A$
\ldots	$B \rightarrow C$	0.2	$B \rightarrow B$	1	
\ldots		$A \rightarrow C$	0.2×0.1	$C \rightarrow C$	1

Note that this is not a PCFG anymore as the rules do not sum to I for each parent

$A \rightarrow B$	0.1					
$B \rightarrow C$	0.2		$A \rightarrow B$	0.1	$A \rightarrow A$	1
$A \rightarrow C$	1.e -5		$B \rightarrow C$	0.1	$B \rightarrow B$	1
	$A \rightarrow C$	0.02	$C \rightarrow C$	1		

What about loops, like: $A \rightarrow B \rightarrow A \rightarrow C$?

Recovery of the tree

- For each signature we store backpointers to the elements from which it was built
- start recovering from $[0, \mathrm{n}, \mathrm{S}]$
- What do we store in backpointers?
- rule
- for binary rules, midpoint
- Be careful with unary rules
- Basically you can assume that you always used an unary rule from the closure (but it could be the trivial one $C \rightarrow C$)

Speeding up the algorithm

- Basic pruning (roughly):
- For every span (i,j) store only labels which have the probability at most N times smaller than the probability of the most probable label for this span
- Check not all rules but only rules yielding subtree labels having non-zero probability
- Coarse-to-fine pruning
- Parse with a smaller (simpler) grammar, and precompute (posterior) probabilities for each spans, and use only the ones with non-negligible probability from the previous grammar

Parsing evaluation

- Intrinsic evaluation:
- Automatic: evaluate against annotation provided by human experts (gold standard) according to some predefined measure
- Manual: ... according to human judgment
- Extrinsic evaluation: score syntactic representation by comparing how well a system using this representation performs on some task
- E.g., use syntactic representation as input for a semantic analyzer and compare results of the analyzer using syntax predicted by different parsers.

Standard evaluation setting in parsing

- Automatic intrinsic evaluation is used: parsers are evaluated against gold standard by provided by linguists
- There is a standard split into the parts:
- training set: used for estimation of model parameters
- development set: used for tuning the model (initial experiments)
- test set: final experiments to compare against previous work

Automatic evaluation of constituent parsers

- Exact match: percentage of trees predicted correctly
- Bracket score: scores how well individual phrases (and their boundaries) are identified

Brackets scores

- The most standard score is bracket score
- It regards a tree as a collection of brackets:[min, max, C]
- The set of brackets predicted by a parser is compared against the set of brackets in the tree annotated by a linguist
- Precision, recall and F1 are used as scores

Preview: F1 bracket score

Estimating PCFGs

Estimating PCFGs

Associate probabilities with the rules : $p(X \rightarrow \alpha)$

$$
\begin{aligned}
& \forall X \rightarrow \alpha \in R: \quad 0 \leq p(X \rightarrow \alpha) \leq 1 \\
& \forall X \in N: \quad \sum_{\alpha: X \rightarrow \alpha \in R} p(X \rightarrow \alpha)=1
\end{aligned}
$$

Estimating PCFGs: Intuition

- Probabilistic Regular Grammar

$$
\begin{aligned}
& N^{i} \rightarrow w^{j} N^{k} \\
& N^{i} \rightarrow w^{j} \\
& \text { Start state, } N^{1}
\end{aligned}
$$

Estimating PCFGs: Intuition

- Probabilistic Regular Grammar

$$
\begin{aligned}
& N^{i} \rightarrow w^{j} N^{k} \\
& N^{i} \rightarrow w^{j} \\
& \text { Start state, } N^{1}
\end{aligned}
$$

Estimating PCFGs: Intuition

- Probabilistic Regular Grammar

$$
\begin{aligned}
& N^{i} \rightarrow w^{j} N^{k} \\
& N^{i} \rightarrow w^{j} \\
& \text { Start state, } N^{1} \\
& O: \text { the big brown }
\end{aligned}
$$

Estimating PCFGs: Intuition

Estimating PCFGs: Intuition

Unsupervised estimation of PCFGs

- Notation
- Calculating inside probabilities
- Calculating outside probabilities
- The inside-outside algorithm (EM) - preview

Notation

- Non-terminal symbols (latent variables): $\left\{N^{1}, \ldots, N^{n}\right\}$
- Sentence (observed data): $\left\{w_{1}, \ldots, w_{m}\right\}=w_{1 m}$
- $N_{p q}^{j}$ denotes that N^{j} spans $w_{p q}$ in the sentence

Inside probability

- Definition (compare with backward prob for HMMs):

$$
\beta_{j}(p, q)=P\left(w_{p}, \ldots, w_{q} \mid N_{p q}^{j}, G\right)=P\left(N_{p q}^{j} \rightarrow w_{p q} \mid G\right)
$$

- Computed recursively
- Base case: $\quad \beta_{j}(k, k)=P\left(w_{k} \mid N_{k k}^{j}, G\right)=P\left(N_{j} \rightarrow w_{k} \mid G\right)$
- Induction:

$$
\beta_{j}(k, k)=P\left(w_{k} \mid N_{k k}^{j}, G\right)=P\left(N_{j} \rightarrow w_{k} \mid G\right)
$$

 is binarized

$$
\beta_{j}(p, q)=\sum_{r s} \sum_{d=p}^{q-1} P\left(N^{j} \rightarrow N^{r} N^{s}\right) \beta_{r}(p, d) \beta_{s}\left(d+1, q^{\prime}\right)
$$

Implementation: PCFG parsing

```
for each max from 2 to n
    for each min from max - 2 down to 0
        for each syntactic category C
        r--------------------------
        double best = undefined
        for each binary rule C -> C1 C C 
            for each mid from min + 1 to max - 1
                double t }\mp@subsup{\textrm{t}}{1}{}=\mathrm{ chart[min][mid][C1]
                double t }\mp@subsup{t}{2}{}=\mathrm{ chart[mid][max][C2]
                double candidate = tr * th * p(C -> Cl C C )
            if candidate > best then
                best = candidate
            chart[min][max][C] = best
```


Implementation: inside

```
for each max from 2 to n
    for each min from max - 2 down to 0
        for each syntactic category C
        r-----------------------------
        double total = 0.0
            for each binary rule C -> C1 C C 
            for each mid from min + 1 to max - 1
                double t }\mp@subsup{\textrm{t}}{1}{}=\mathrm{ chart[min][mid][C1]
                double t }\mp@subsup{t}{2}{}=\mathrm{ chart[mid][max][C2]
                double candidate = tr * th * p(C -> Cl C C C)
            total = total + candidate
            chart[min][max][C] = total
```


Implementation: inside

```
for each max from 2 to \(n\)
    for each min from max - 2 down to 0
        for each syntactic category C
            double total \(=0.0\)
            for each binary rule \(C \rightarrow C_{1} C_{2}\)
                    for each mid from min +1 to max
                double \(\mathrm{t}_{1}=\) chart[min][mid \(][\mathrm{c} /]\)
                double \(t_{2}=\) chart[mid] max \(\left[C_{2}\right]\)
                double candidate \(=t y \mathrm{t}_{2} * \mathrm{p}\left(\mathrm{C} \rightarrow \mathrm{C}_{1} \mathrm{C}_{2}\right)\)
                    total \(=\) total candidate
    chart[min][max][c] = total
```


Implementation: inside

for each max from 2 to n
for each min from max - 2 down to 0
for each syntactic category C
double total $=0.0$
for each binary rule $C \rightarrow C_{1} C_{2}$
for each mid from $\min +1$ to max - 1
double $t_{1}=\operatorname{chart}[\min][m i d]\left[C_{1}\right]$
double $t_{2}=$ chart[mid][max][C2]
double candidate $=\mathrm{t}_{1} * \mathrm{t}_{2} * \mathrm{p}\left(\mathrm{C} \rightarrow \underset{\mathrm{C}_{1}}{ } \mathrm{C}_{2}\right)$
total $=$ total + candidate
chart[min][max][C] = total

Inside probability: example

Inside probability: example

Inside probability: example

Inside probability: example

$$
\begin{array}{llll}
\mathrm{NP} \rightarrow \mathrm{DET} \mathrm{~N} & 0.8 & \mathrm{NP} \rightarrow \mathrm{~N} & 0.2 \\
\mathrm{DET} \rightarrow \mathrm{a} & 0.6 & \mathrm{DET} \rightarrow \text { the } & 0.4 \\
\mathrm{~N} \rightarrow \text { apple } & 0.8 & \mathrm{~N} \rightarrow \text { orange } & 0.2
\end{array}
$$

Inside probability: example

$$
\beta_{S}(1, m)=P\left(S \rightarrow w_{1}, \ldots, w_{m} \mid G\right)
$$

Outside probability

- Definition (compare with forward prob for HMMs):

$$
\alpha_{j}(p, q)=P\left(w_{1(p-1)}, N_{p q}^{j}, w_{(q+1) m} \mid G^{\prime}\right.
$$

- The joint probability of starting with S, generating words w_{1}, \ldots, w_{p-1}, the non terminal N^{j} and words w_{q+1}, \ldots, w_{m}.

Calculating outside probability

- Computed recursively, base case
$\alpha_{1}(1, m)=\alpha_{S}(1, m)=1$

$$
\alpha_{i \neq 1}(1, m)=0
$$

- Induction?
- Intuition: $N_{p q}^{j}$ must be either the L or R child of a parent node. We first consider the case when it is the L child.

Calculating outside probability

- The yellow area is the probability we would like to calculate
- How do we decompose it?

Calculating outside probability

- Step 1: We assume that $N_{p \epsilon}^{f}$ is the parent of $N_{p q}^{j}$ Its outside probability, $\alpha_{f}(p, e)$ (represented by the yellow shading) is available recursively. But how do we compute the green part?

Calculating outside probability

- Step 1: The red shaded area is the inside probability for $N_{(q+1) \epsilon}^{g}$, i.e. $\beta_{q}(q+1, e)$

Calculating outside probability

- Step 3: The blue shaded area is just the production $N^{f} \rightarrow N^{j} N^{g}$, the corresponding probability $P\left(N^{f} \rightarrow N^{j} N^{g} \mid N^{f}, G\right.$,

Calculating outside probability

- If we multiply the terms together, we have the joint probability corresponding to the yellow, red and blue areas, assuming N^{j} was the L child of N^{f}, and give fixed non-terminals f and g, as well as a fixed partition e

Calculating outside probability

- The joint probability corresponding to the yellow, red and blue areas, assuming N^{j} was the L child of some non-terminal:

Calculating outside probability

- The joint probability corresponding to the yellow, red and blue areas, assuming N^{j} was the R child of some non-terminal:

Calculating outside probability

- The joint final joint probability (the sum over the L and R cases):

$$
\alpha_{j}(p, q)=\sum_{f, g} \sum_{e=q+1}^{m} \alpha_{f}(p, e) \cdot \beta_{g}(q+1, e) \cdot P\left(N^{f} \rightarrow N^{j} N^{g}\right)+\sum_{f, g} \sum_{e=1}^{p-1} \alpha_{f}(e, q) \cdot \beta_{g}(e, p-1) \cdot P\left(N^{f} \rightarrow N^{g} N^{j}\right)
$$

Calculating outside probability

- The joint final joint probability (the sum over the L and R cases):

$$
\alpha_{j}(p, q)=\sum_{f, g \neq j} \sum_{e=q+1}^{m} \alpha_{f}(p, e) \cdot \beta_{g}(q+1, e) \cdot P\left(N^{f} \rightarrow N^{j} N^{g}\right)+\sum_{f, g} \sum_{e=1}^{p-1} \alpha_{f}(e, q) \cdot \beta_{g}(e, p-1) \cdot P\left(N^{f} \rightarrow N^{g} N^{j}\right)
$$

Inside-outside algorithm

For PCFGs we need to compute:

$$
\theta^{t}=P\left(N^{j} \rightarrow N^{r} N^{s} \mid N^{j}\right)
$$

EM

- Given two events, x and y, the maximum likelihood estimation (MLE) for their conditional probability is:

$$
P(x \mid y)=\frac{\operatorname{count}(x, y)}{\operatorname{count}(x)}
$$

- If they are observable, it's easy to see what to do: just count the events in a representative corpus and use the MLE

EM

- What these are hidden variables that cannot be observed directly?
- Use a model μ and iteratively improve the model based on a corpus of observable data (O) generated by the hidden variables:

$$
P_{\hat{\mu}}(x \mid y)=\frac{E_{\mu}[\operatorname{count}(x, y) \mid O]}{E_{\mu}[\operatorname{count}(x) \mid O]}
$$

- It is worth noting that if you know how to calculate the numerator, the denominator is trivially derivable.

EM

- By updating μ and iterating, the model converges to at least a local maximum
- This can be proven, but I will not do it here.

The inside-outside algorithm

- Goal: estimate a model μ that is a PCFG (in Chomsky normal form) that characterizes a corpus of text.
- Required input:
- Size of non-terminal vocabulary, n
- At least one sentence to be modeled, O

The inside-outside algorithm

- Stated with the general schema described earlier, we seek to the MLE probabilities for productions in the grammar

$$
P\left(N^{j} \rightarrow N^{r} N^{s} \mid N^{j}\right)=\frac{\operatorname{count}\left(N^{j} \rightarrow N^{r} N^{s}, N^{j}\right)}{\operatorname{count}\left(N^{j}\right)}
$$

- (Observe that this would be trivially easy to calculate this with a treebank, since the non-terminals are observable in a treebank)

The inside-outside algorithm

- Since the non-terminals are not visible, we can use EM to estimate the probabilities iteratively:

$$
P_{\hat{\mu}}\left(N^{j} \rightarrow N^{r} N^{s} \mid N^{j}\right)=\frac{E_{\mu}\left[\operatorname{count}\left(N^{j} \rightarrow N^{r} N^{s}, N^{j}\right) \mid O\right]}{E_{\mu}\left[\operatorname{count}\left(N^{j}\right) \mid O\right]}
$$

To be continued...

- Next: recitation on EM

